New Mississippian trilobite association from the Brno vicinity and its significance (Moravian Karst, Czech Republic)

ŠTĚPÁN RAK1, JIŘÍ KALVODA2 and FRANCOIS-XAVIER DEVUYST3

1Charles University in Prague, Faculty of Science, Institute of Geology and Palaeontology, Albertov 6, CZ-128 43 Praha 2, Czech Republic; deiphon@geologist.com
2Masaryk University, Faculty of Science, Kodlášská 267/2, 611 37 Brno, Czech Republic; dino@sci.muni.cz
3Carmeuse Lime & Stone, Technology Center, 3600 Neville Road, Pittsburgh PA15225, USA; devuyst@hotmail.com

(Manuscript received May 2, 2011; accepted in revised form March 13, 2012)

Abstract: Eleven trilobite species (Archeogonus (Archeogonus) aequalis philiboloides R. Hahn, 1967, Bollandia persephone (Hahn & Hahn, 1970), Bollandia cf. megaia (Hahn & Hahn, 1970), Liobole (Panibole) cf. jugovensis (Osmólska, 1968), Liobole (Salcabo) glabroides (Richter & Richter, 1949), Semiproetus (Macrobole) drewerensis latipalpebratus (Osmólska, 1973), Prolibole vigilax (Chlupáč, 1961), Cyrtoproetus (Cyrtoproetus) cracensis cracensis (Reed, 1899), Carbonocoryphe (Carbonocoryphe) bindemannii Richter & Richter, 1950, Tavostickia (Beleckella) milleri (Hahn & Hahn, 1971), Cummingella (Cummingella) cf. auge Hahn & Hahn, 1968) are described for the first time from the shales of the Březina Formation in the Mokrá Quarry but they do not come from the exact Tournaisian-Visean boundary. Stratigraphical correlation and comparison of material is mentioned below, as is the history of the trilobite research from the Moravian Karst.

Key words: Carboniferous, Moravian Karst, paleontology, biostratigraphy, trilobites.

Introduction

The Tournaisian-Visean (T-V) boundary was intensively investigated during the last two decades because of growing evidence that the former T-V stratotype at Bastion in Dinant Synclinorium in Belgium does not fulfill the conditions required for GSSP and has to be replaced (Kalvoda 1983, 1990; Devuyst 2006). The Working Group on the T-V boundary was set up in 1995 by the Subcommission on Carboniferous Stratigraphy in order to find a section to replace the inadequate GSSP of the base of the Visean (Bastion section, Namur-Dinant Basin, southern Belgium) and to establish the criterion (appearance of the foraminifer Eoparastaffella simplex) required for GSSP and has to be replaced (Kalvoda 1983, 1990; Devuyst 2006). The Pengchong section of Guangxi (southern China) was proposed as the best candidate for a new stratotype for the base of the Visean can be retained, as E. simplex is part of an evolutionary lineage starting in the latest Tournaisian (Hance & Muchez 1995; Hance 1997; Devuyst 2006). The Pengchong section of Guangxi (southern China) was proposed as the best candidate for a new stratotype for the base of the Visean (Hance 1997; Devuyst et al. 2003). The highest occurrence of the conodont Scalognathus anchoralis europensis, at about 30 m below the boundary in the GSSP at Pengchong.

The Mokrá Quarry exposes one of the best successions for trilobite association from Moravia until the 1960. Just a few papers reporting sporadic fragments of trilobites exist. Chlupác (1956) found Carboniferous trilobites in greenish shales of the Březina Formation (Mississippian) during his stratigraphical investigations near Hranice na Moravě. At that time these shales were supposed to be Devonian in age. Because of the stratigraphical importance of this discovery trial pits, which helped to understand the relation of stratigraphy correctly were excavated. Trilobite fauna described from pelitic facies from Moravia are derived just from three localities until today. All these sites were challenged during Chlupác’s investigation of Moravia in 1956–65. Six trilobite taxa were described by Chlupác (1966) from greenish and brown-redish silt shales from fields along the eastern border of the village of Březina, ca. 400 m from the crossroads near western border of this village. The trilobite association derived from this site is stratigraphically older than the trilobite taxa from the new found facies in the Mokrá Quarry. In 1956 Chlupác described six trilobite taxa from the northern border of the Marian Valley (Mariánské údolí) from greenish shales of the Březina Formation (Mississippian) from a field south of the village of Zbrašov near Hranice na Moravě. He noticed another occurrence of Lower Carboniferous trilobites...
from the Říčka Valley (Údolí Říčky), (about 100 m, N of the new bathing place), and established two other trilobite taxa.

All the trilobite associations studied by Chlupáč during the years 1956–65 belong to the Upper part of the Pericyclus Stage cu II γ (=Lower Visean). Chlupáč (1965) noted the trilobite occurrence from test pits from the neighbourhood of the Mokrá Quarry, but they derived from carbonate facies of the Hády-Říčka Limestones and not from shales. There is no published paper discussing a presence of Lower Carboniferous (Mississippian) trilobites of the Březina Formation.

Geological settings of the Mokrá Quarry near Brno

The village of Mokrá is situated northwest of Brno (Czech Republic), in the southernmost part of the Moravian Karst (Fig. 1). Devonian and Carboniferous rocks cropping out in the Mokrá Quarry represent the sedimentary cover of the Brunovistulian Unit which were situated on the southern tip of Laurussia during the Variscan time (Kalvoda et al. 2003). It is often regarded as the eastern-most continuation of the Rhenohercynian Zone (Franke 1989; Kalvoda 1998; Kalvoda et al. 2002, 2003, 2008) and was involved in the collision with the Lugodanubian terranes (Armorican Terrane Assemblage of Tait et al. 1997; Kalvoda et al. 2008).

In the large quarries of the cement works, a sequence of Frasnian reefoid limestones (Macocha Formation), Famennian to Visean calciturbidites and rarely also hemipelagites (Líšeň Formation), transitional flysch sediments (Březina Formation) and typical flysch (Březina Formation) is cropping out (Fig. 2). Different facies developments are tectonically convergent here, they underwent a polyphase deformation and complex overthrusting (Rez 2004a,b). In the late Tournaisian–early Visean, a lithologically different facies development of turbidites represents a facies change from different granulometric types of limestones (Hády-Říčka Limestones) to limestones with reddish to greenish shale intercalations and shales with limestone intercalations (Březina Formation) (Fig. 2). Both facies interfinger and the boundary between them is often hard to determine. The limestones contain abundant foraminiferal fauna, locally rugose corals, variable amounts of conodont fauna and in its deeper facies developments also trilobite fauna and brachiopods associated with bivalves and ammonoids (Kalvoda et al. 2010). The T-V boundary was studied both in the uppermost Hády-Říčka Limestones and in the Březina Formation which crop out in the eastern benches of the quarry.

Biostratigraphie

The high resolution biostratigraphy of the T-V boundary interval is primarily based on
the foraminiferal fauna. The search for a new stratotype of the T-V boundary in the last decade contributed to the substantial refinement of the biostratigraphical resolution by Devuyst (2006) and Devuyst & Kalvoda (2007). In the zonation of Devuyst & Hance (2006) the T-V boundary is placed at the base of MFZ9 which is characterized by the appearance of *Eoparastaffella simplex*. The base of MFZ8 coincides then with the appearance of the first fusulinid *Eoparastaffella* (Fig. 3). Higher in the sequence, the first occurrence of *Eoparastaffella ovalis* Morphotype 2 and *Eoparastaffella asymmetrica* represent additional guides of the MFZ9 (Devuyst 2006). The disappearance of *Elevenella parvula* in late MFZ8 or close to the T-V boundary represents another important bio-event.

In terms of conodont zonation, the disappearance of *Scaliognathus anchoralis* below the base of the Visean represents the most reliable event at this stratigraphical level that can be traced worldwide. The stratigraphic interval between the last appearance datum of *S. anchoralis* and the first appearance datum of *Gnathodus homopunctatus*, an index species of the first Visean conodont zone, commonly contains abundant *Gnathodus* (in particular *G. pseudosemiglaber*) and was recently named the *Gnathodus Interzone* (Devuyst & Kalvoda 2007). The additional important bio-events are represented by the appearance of *Mestognathus beckmanni* from its ancestor *M. praebekmanni* slightly below the T-V boundary.

Material and methods

During the first author’s thesis research, focused on systematic investigation of the Mokrá Quarry, highly fossiliferous levels of the Březina Formation were discovered. All fragments of fossils were documented and photographed, then restored using CorelDRAW computer programme with axis cross to establish the original shape of trilobite remains. At the same time, the tectonic processes in layers of sections can be studied according to the type of their deformation. Limestones in the upper and lower layers of reddish shales of the Březina Formation were dissolved by using acetic acid. The main goal of this research was to establish the occurrence and stratigraphy of found conodont taxa. The study of the newly found trilobite assemblage will enable a correlation with other fauna from the W European occurrences, such as the Erdbacher Kalken (Harz; Hahn G. 1967), which show a close affinities to taxa from the Mokrá Quarry. A thorough functional morphological analysis of trilobite fragments (see Thomas & Lane 1984; Fortey & Owens 1999) can show us their feeding habits. The taphonomic conditions in pelitic sediments — dorsoventral and lateral deformation — made difficult the final determination of trilobite taxa.

Among the associated faunal components, isolated columns of crinoids were also collected. It consists of the fol-

The brachiopod fauna of the Mokrá Formation is remarkably diverse. Two discrete but very probably mixed brachiopod associations can be tentatively differentiated. It is probably subaontochtonous, of deep-water origin and comprises large smooth thynnchonellids similar to *Illopsyrynchus*, small chonetids *Rugosoconchites* sp. and arhipidomellid *Aulacella* sp. These taxa are mostly deformed but commonly complete with valves articulated; a minute discinaeacean *Orbiculoides* sp. is very rare but probably belongs to the same association.

The second fossil association is represented by brachiopid fragments, commonly associated with coarse biotectric and clastic material. It includes the spiriferid genera *Prospira* and *Tylothyris*, medium-sized reticulirid *Reticularia*, large chonetoids referable to *Rugosoconchites*, a rhipidomellid *Rhipidomella* sp. and two or three poorly preserved produc-tids, of which *Plicatifer* is characteristic. These taxa are probably allochthonous, and represent fauna of the shallower shelf. There were also poor remains of deformed goniatites, corals and other groups of fossils.

Description of sections and occurrences of trilobites and other fauna

All studies about the autecology of trilobites from the Czech Republic until today focused on the Barrandian area. The major studies about the Cambrian and Ordovician trilobite autecology was published by Šnajdr (1978), Havliček & Vaněk (1990), Fusco G. et al. (2004), Budíl et al. (2007), Mergl et al. (2007) concentrated on the autecology of Silurian trilobites but also studied a Devonian trilobite assemblage and their autecology from the Chýnice Limestones.

Chlupáč (1983) and Chlupáč et al. (1985) concentrated on a trilobite assemblage from the Lochkovian–Pragian interval in the Prague Basin. Havliček & Vaněk (1998) studied brachiopod and trilobite assemblages and the main Pragian biol-facies of the Prague Basin. Surprisingly, there has been no work about the autecology of Lower Carboniferous trilobites from the Moravian Karst. In the last few years Lower Carboniferous shales of the Březina Formation with very common fragments of trilobites were uncovered in the Mokrá Quarry. After comparison with foreign material and modern literature (Hahn G. & Hahn R. 1988; Hahn G. 1990; Hahn G. et al. 1996), twelve taxa of trilobites were distin-guished and knowledge of Lower Carboniferous trilobites was extended. The occurrence of the typical conodont and foraminiferal taxa makes these trilobite finds the youngest found in the Březina Formation from the entire Moravian Karst. Eleven species of trilobites have been identified from the Mokrá Quarry, of which the majority originate from the Moravian Karst for the first time (Rak 2004). All specimens from pelitic shales show clear evidence of dorsoventral and lateral deformations. However, preservation is sufficient to enable comparison with the type material of these species from coeval carbonate sequences (Erdbach Limestone) in the Harz Mountains. Later investigations at the Mokrá Quarry concentrated mainly on the T-V boundary and study of foraminiferal and conodont fauna (Kalvoda & Ondráčková 1999, 2003; Ondráčková 2000, 2001).

At present 978 fragments of trilobites (241 kranidia, 47 librigena, 9 cephalha, 197 pygidia, 11 articulated exoskeletons and 6 exuviae, etc.) of eleven taxa have been found. Activities have to be done in an active quarry, therefore it has a strong aspect of preservation work.

Systematics of Trilobita

Family: Proetiidae Hawle & Corda, 1847

Subfamily: Archegoninae Hahn G. & Brauckmann, 1984

Genus: Archegonus Burmeister, 1843

Subgenus: Archegonus (Archeagonus) Burmeister, 1843 [non *Philibole* Richter & Richter, 1937]

Type species: Archegonus (Angustibole) winterbergensis Hahn G., 1965.

Archegonus (Archeagonus) aequalis (H. v. Meyer, 1831)

Archegonus (Archeagonus) aequalis philiboloides R. Hahn, 1967

Fig. 4.1

1967 *Archegonus (Archeagonus) aequalis philiboloides* – R. Hahn, 101, 102

1968 *Archegonus (Archeagonus) aequalis philiboloides* – R. Hahn, 208-210

1975 *Archegonus (Archeagonus) aequalis philiboloides* – Hahn & Hahn, 43

Holotype: Cranidium SMF (Senckenberg Museum Frankfurt) 22002.

New material and horizon: Three articulated exoskeletons preserved in shale, (SR 10). Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ28.

Description: Three large articulated exoskeletons preserved in a row, on one slab of shale (see Fig. 4.1).

Despite dorsoventral deformation, all characteristic features are preserved and comparable to the type material (see R. Hahn, 1968).

Subfamily: Bollandiinace Hahn & Brauckmann, 1988

Bollandia Reed, 1943

Type species: Asaphus globiceps Phillips, 1836.

Bollandia persephone (Hahn & Hahn, 1970)

1966 *Griffithides* sp. – Hahn, p. 349-350

1967 *Griffithides* sp. – Hahn, p. 183-184

1970 *Griffithides* (Bollandia) persephone sp. n. – Hahn & Hahn, p. 211-212

1971 *Griffithides* (Bollandia) persephone – Hahn & Hahn, p. 136-141

1975 *Griffithides* (Bollandia) persephone – Hahn & Hahn, p. 60

1977 *Griffithides* (Bollandia) persephone – Gandl, p. 190

2003 *Bollandia* persephone – Hahn et al. p. 60

GEOLÓGICA CARPATHICA, 2012, 63, 3, 181–190
Fig. 4. 1 — Archegonus (Archegonus) aequalis philliboloides R. Hahn, 1967, exoskeletons of three specimens, dorsal view, Mokrá Quarry, SR10. 2 — Cummingella (Cummingella) cf. auge Hahn & Hahn, 1968, two pygidia, dorsal view, Mokrá Quarry, SR11. 3 — Liobole (Pani-bole) cf. jugovensis (Osmólska, 1968), nearly articulated exoskeleton, dorsal view, Mokrá Quarry, SR12. 4 — Proliobole vigilas (Chlupáč, 1961), two nearly articulated exoskeletons, dorsal view, Mokrá Quarry, SR13. 5 — Cyrtoproetus (Cyrtoproetus) cracoensis cracoensis (Reed, 1899), cranidium, dorsal view, Mokrá Quarry, SR14. 6 — Semiproetus (Macrobole) drewerensis latipalpebratus (Osmólska, 1973), cranidium, dorsal view, Mokrá Quarry, SR15. 7 — Tawstockia (Beleckella) milleri (Hahn & Hahn, 1971), cephalon, dorsal view, Mokrá Quarry, SR16. Scale bars represent 5 mm.
New material and horizon: Two incomplete cranidia, five incomplete pygidia (Figs. 2A–K, 244 Fig. 3), SR 3–9, S. anchoralis Zone.

Remarks: All the specimens are assigned to Bollandia persephone (Hahn & Hahn, 1970) because they correspond to the type specimens especially in the sculpture of the glabella, the straight, broad, shallow S1, the proportions, convexity and general outline of the pygidium (see Rak & Aubril 2009).

Bollandia cf. megaira (Hahn & Hahn, 1970)

New material and horizon: A single poorly preserved weathered pygidium, S. anchoralis Zone.

Description: Sculpture as far as can be determined, pygidium entirely smooth with very convex axis and rings (see Rak & Aubril 2009).

Remarks: Because only one incomplete specimen is available, it is left in open nomenclature; additional material is required for confident specific determination.

Genus: Liobole Richter & Richter, 1949
Subgenus: Liobole (Panibole) Gröning, 1985

Type species: Phillipsia glabra Holzapfel, 1889.

Liobole (Panibole) cf. jugovensis (Osmólska, 1968) Fig. 4.3

Holotype: Cranidium IG 442, II. (Osmólska, 1968: 4a, Abb. 23a,b).

Subgenus: Liobole (Sulcubole) Gröning, 1985

Type species: Phillipsia glabra Holzapfel, 1889.

Liobole (Sulcubole) glabroids (Richter & Richter, 1949)

1949 Phillibole (Liobole) glabroids — Richter & Richter, 71, 79, 82–84
1961 Liobole glabroids — Erben, Blinding Prostidiae, 90
1962 Liobole glabroids glabroids — Osmólska, 169
1966 Liobole glabroids — Chlupáč, 62
1971 Liobole cf. glabroids glabroids — H. Zakowa, Zone Goniattes granosus in the Galezice syncline (Góry Swietokrzyskie), 70
1975 Liobole glabroids — Hahn & Hahn, 9, 44
1985 Liobole (Sulcubole) glabroids — Gröning, 142
2000 Liobole (Sulcubole) glabroids — Hahn, Hahn & Müller, 166–167

Holotype: Cranidium SMF X 1336a (Richter & Richter, 1949: pl. 3, fig. 30).

New material and horizon: Four cranidia. Latest Tournaisian S. anchoralis conodont Zone, foraminiferal Zone MFZ8.

Genus: Semiproetus Reed, 1943
Subgenus: Semiproetus (Macrobole) Richter & Richter, 1951

Semiproetus (Macrobole) drewerensis Richter & Richter, 1951

Type species: Proetus (Semiproetus) twistonensis Reed 1943.

Semiproetus (Macrobole) drewerensis latipalpebratus (Osmólska, 1973) Fig. 4.6

1973 Phillibole drewerensis latipalpebratus — Osmólska, 61, 65–66, 67, tab. 1, pl. 1, figs. 7–9, text-fig. 1C
1975 Archegonus (Phillibole) drewerensis longipalpebratus — Hahn & Hahn, 42
1977 Archegonus (Phillibole) latipalpebrata — Gandl, Tril. Alba-Schichten, 155, 159
1981 Archegonus (Phillibole) drewerensis latipalpebrata — Brauckmann, Kulm-Tril. cul, 99
1985 Archegonus (Macrobole) drewerensis latipalpebrata — Oliveira et al., 116
1988 Archegonus (Phillibole) drewerensis latipalpebratus — Flajs & Feist, 75, 77–78, pl. 11, figs. 1–3, 5, 6 (non pl. 11, fig. 4)
1989 Archegonus (Phillibole) drewerensis latipalpebrata — Xiang in Ji Qiang et al., 121, pl. 35, fig. 7a–b
1991 Archegonus (Phillibole) drewerensis latipalpebratus — Archinal, 194
1992 Archegonus (Phillibole) drewerensis latipalpebratus — Archinal, 46–47, fig. 34a–b (cf (with further synonymy)

Holotype: Cranidium Z. Pal. No. Tr. III/9a (Osmólska 1973: pl. 1, fig. 8).

Description: Lateral furrows on glabella are not clear, convexity of glabella and occipital ring as preglabellar field and border are typical for this taxon.

Genus: Prolibole Archinal, 1991

Type species: Phillipsia nitida Holzapfel, 1889.

Prolibole vigilax (Chlupáč, 1961) Fig. 4.4

1961 Cyrtosymbole (Macrobole) vigilax — Chlupáč, 230, pl. 2, fig. 1
1965 Archegonus (Phillibole) vigilax — G. Hahn, 251
1966 Cyrtosymbole (Macrobole) vigilax — Chlupáč, 45
1969 Archegonus (Phillibole) vigilax — Hahn & Hahn, 106
1987 Archegonus (Phillibole) vigilax — Hahn et al., Tril. Belg. Kohlenkalk, 9, 144
1991 Prolibole vigilax — Archinal, 195
1992 Prolibole vigilax — Archinal, 67–69, figs. 47–48 (with further synonymy)

Holotype: Cranidium ICh 1092 (Chlupáč 1961: pl. 2, fig. 1; 1966: pl. 8, fig. 5, text-fig. 13).
New material and horizon: Two incomplete exoskeletons in one slab of shale (SR 13). Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ8.

Description: Preserved are just incomplete cranidia with remarkable branches in occipital convex ring. L3 convex. Occipital tubercle is not preserved. Axis flat and wide, composed of eight tight flat pleuras. Interpleural furrows deep and narrow. Pygidium of semicircular outline, with remarkably wide axis and border. Interpleural furrows not visible.

Genus: *Cyrtoproetus* Reed, 1943
Subgenus: *Cyrtoproetus* (*Cyrtoproetus*) Reed, 1943

Type species: *Phillipsia cracoensis* Reed, 1899.

Cyrtoproetus (*Cyrtoproetus*) cf. *cracoensis* Reed, 1899

Cyrtoproetus (*Cyrtoproetus*) cf. *cracoensis* cracoensis (Reed, 1899) 1899 *Phillipsia cracoensis* — Reed, 241–245, pl. 10, figs. 1–7
1943 *Cyrtosymbole* (*Cyrtoproetus*) cf. *cracoensis* — Reed, 64
1959 *Cyrtoproetus* cf. *cracoensis* — J.M. Weller, 413
1968 *Archeogonus* (*Cyrtoproetus*) cf. *cracoensis* — Osmólska, 142–144
1969 *Cyrtoproetus* cf. *cracoensis* — Hahn & Hahn, 54–55
1987 *Cyrtoproetus* (*Cyrtoproetus*) cf. *cracoensis* cracoensis — Brauckmann & Tilssley, 148–149, pl. 1, figs. 1–3, text-figs. 1–2 (with further synonymy)
1998 *Cyrtoproetus* (*Cyrtoproetus*) cf. *cracoensis* cracoensis — Hahn et al., 175

Lectotype: Craniid Sedgwick Museum, Cambridge, E3532 (Reed 1899: pl. 1, fig. 1; Osmólska 1968: pl. 5, fig. 3).

New material and horizon: One craniid (SR 14). Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ8.

Description: A complete cranidium with badly preserved glabellar furrows and branches in occipital convex, wide, ring. Occipital tubercle is well preserved. Preglabellar border is flat and narrow.

Genus: *Carbonocoryphe* Richter & Richter, 1950
Subgenus: *Carbonocoryphe* (*Carbonocoryphe*) Richter & Richter, 1950

Type species: *Carbonocoryphe bimennani* Richter & Richter, 1950.

Carbonocoryphe (*Carbonocoryphe*) bimennani Richter & Richter, 1950

1950 *Carbonocoryphe* bimennani — Richter & Richter, 278–280, pl. 1, fig. 1–7
1975 *Carbonocoryphe* bimennani — Hahn & Brauckmann, 329, fig. 20a–b

Holotype: Craniid SMF X 1333a (Richter & Richter 1950: pl. 1, fig. 1a–b).

New material and horizon: One incomplete pygidium. Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ8.

Description: Only the incomplete right half of the pygidium is preserved. It has deep and characteristic pleural furrows. Axis with wide and flat axis.

Subfamily: *Cystispiniinae* Hahn & Hahn, 1982
Genus: *Tawstockia* Brauckmann, 1974
Subgenus: *Tawstockia* (*Beleckella*) Hahn, Hahn & Brauckmann, 1992

Type species: *Phillibole* (? *Cytipsina* nasifrons) Richter & Richter, 1949.

Tawstockia (*Beleckella*) milleri (Hahn & Hahn, 1971) 1971 *Spatulina spatulata milleri* — Hahn & Hahn, 485–487, pl. 2, fig. 16–20, text-fig. 10
1972 *Spatulina spatulata milleri* — Hahn & Hahn, 432–433
1973 *Tawstockia milleri* — C. Brauckmann, Kulm-Trilobiten von Aprath, 165
1992 *Tawstockia* (*Beleckella*) milleri — Hahn et al., 104, 114, 116, tab. 1
1993 *Tawstockia* (*Beleckella*) milleri — Hahn & Hahn, 87–89, fig. 68 (with further synonymy)

Holotype: Librinigena SMF 22766 (Hahn & Hahn 1971: pl. 2, fig. 16, text-fig. 10).

New material and horizon: One cephalon with hypostoma (SR 16). Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ8.

Remarks: Cephalon with both complete genal spines and with hypostoma displaced to the left side from its position in situ is preserved. Preglabellar field is wider than in the type species. Well preserved duplicature on ventral side and the 3-dimensional terminal part of left genal spine. Glabellar field is broken off and displaced anteriorly.

Subfamily: *Cumingellinae* Hahn & Hahn, 1967
Genus: *Cumingella* Reed, 1942
Subgenus: *Cumingella* (*Cumingella*) Reed, 1942

Type species: *Phillipsia jonesii* Portlock, 1843.

Cumingella (*Cumingella*) cf. *C. auge* Hahn & Hahn, 1968 1968 *Cumingella* cf. *C. auge* — Hahn & Hahn, 450–453, text-figs. 2–3, pl. 1, figs. 6–7
1998 *Cumingella* (*Cumingella*) cf. *C. auge* — Hahn, Hahn & Müller, 191–192, pl. 4, figs. 11–12

New material and horizon: Two pygidia preserved on one slab of a shale (SR 11). Latest Tournaisian *S. anchoralis* conodont Zone, foraminiferal Zone MFZ8.

Description: Two incomplete semicircular convex pygidia are preserved. Pleural and interpleural furrows are not favourably preserved.

Remarks: Based on typical outline of pygidium, pygidial axis and reduction of pleurae it seems to be a representative of this species. Pygidium of semicircular outline, with convex lateral lobes and axis. Rachis convex, wide, com-
posed of eleven convex rings. Interpleural furrows are not visible, pygidial border narrow. Despite dorsoventral deformation, all characteristic features are preserved and comparable to the type material (see Hahn R. 1968).

Conclusion

The discovery of a new trilobite assemblage in the Březina Shales (Březina Formation) in the Mokrá Quarry complements Chlupáč’s research from 1966 on Lower Carboniferous trilobite taxa derived from pelitic facies of the Březina Formation. It significantly enriches our knowledge concerning Moravian Carboniferous trilobite fauna, its diversity and the occurrence of different taxa. In this work, the biostratigraphy of discovered trilobite fauna in Moravian Karst is documented for the first time. The obvious paleogeographical affinities of Moravian trilobite assemblages with other European Carboniferous faunas, especially that of the Harz Mountains (Hahn et al. 1998, 2003) are proved.

The large diversity of trilobite, brachiopod and other associated fauna shows the importance of the Mokrá Quarry in the cosmopolitan context of Mississippian sites.

Acknowledgments: We are grateful to Carsten Brauckmann, Rudolf Prokop, Michal Mergl for determination of non-trilobite fauna Petr Budil and Oldřich Fatka for valuable comments. Štěpán Rak also thanks the Grant Agency of the Czech Academy of Science for its support by means of the Project No. MSM 0021620855. The contribution was supported by the Project MSM 0021620855.

References

Hahn G. & Hahn R. 1968: Kulm Trilobiten aus granosus-Zone.

Rez J. 2004b: Thrust tectonics in the southern part of the Moravian Karst. *Geolines* 17, 80.

